Brassica C-genome Chromosomes, Molecular markers and Linkage Groups

Waheeb K. Heneen and Mulatu Geleta

Swedish University of Agricultural Sciences
Department of Plant Breeding
Alnarp, Sweden

Wuhan 31 March 2014
Brassica Triangle of U (1935)

B. juncea
BB

B. carinata
2n=34
BBCC

B. oleracea
2n=18
CC

B. nigra
2n=16
BB

B. napus
2n=38
AACC

B. rapa
2n=20
AA

B. juncea
2n=36
AABB

Wuhan 31 March 2014
Brassica oleracea (CC, 2n =18)

Cytological mapping

Genetic linkage mapping

Sequence mapping

Physical mapping
Cytological mapping
Heneen et al. (1995)

B. rapa
B. oleracea
Mitotic karyotypes (Cheng et al. 1995)

B. rapa (AA, 2n=20)

B. oleracea (CC, 2n=18)

Wuhan 31 March 2014
Genetic linkage mapping: Markers

Isozymes

Known genes

RFLP
AFLP
RAPD
SCAR, SRAP and CAPS
SSR
SNP
In/Del

Wuhan 31 March 2014
Slocum et al. (1990)

CC

258 RFLP markers
Sharpe et al. (1995)

Parkin et al. (1995)

CC in AACC

RFLP

117 polymorphic loci
Gao et al. (2007)
CC
1257 markers (mainly SRAP)
Wang et al. (2012)

CC

602 SSR
625 SNP
1227

186 C3
99 C9

1197.9 cM
0.98 cM
503.3 kbp

Wuhan 31 March 2014
230 single-locus in AACC when tested on CC:
125 single-locus
47 two loci
24 three or more loci
34 no amplification

Li et al. (2013)

SSR
Physical mapping: Markers

FISH
 rDNA
 Repetitive DNA
 DNA sequences
 cDNA
 SSR

GISH

Wuhan 31 March 2014
Partial physical mapping

Armstrong et al. (1998)
Correspondence between physical and genetic linkage maps

Howell et al. (2002) [MBGP: Parkin et al. (1995), Sharpe et al. (1995)]

Wuhan 31 March 2014
Complete physical mapping

Xiong and Pires (2011)

Wuhan 31 March 2014
Xiong and Pires (2011)
Armstrong et al. (1998)

Howell et al. (2002)

Xiong and Pires (2011)

Wuhan 31 March 2014
Mitotic karyotypes (Cheng et al. 1995)

B. rapa (AA, 2n=20)

B. oleracea (CC, 2n=18)

Wuhan 31 March 2014
Development of Monosomic alien addition lines (MAALs)

Background genome
AA
2n=20
Brassica rapa

Dissected genome
CC
2n=18
B. oleracea

MAALs
AA + C₁

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

AA + C₉
2n=21

Wuhan 31 March 2014
Origin of MAALs

AA + 1 C Chromosome

Wuhan 31 March 2014
Why MAALs

Relating genes and linkage groups to specific chromosomes

Physical mapping of genes and chromosome-specific DNA markers

Monitoring homoeologous chromosome pairing, intergenomic gene transfer, and phylogenetic relationships

Providing bridging materials for plant breeding

Suitable for studies on chromosome organization and gene expression

Wuhan 31 March 2014
Background genome

Brassica rapa

- **AA**
- 2n=20

Dissected genome

B. oleracea ssp. alboglabra

- **CC**
- 2n=18

<table>
<thead>
<tr>
<th></th>
<th>Background genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds</td>
<td>Yellow</td>
</tr>
<tr>
<td>Flower</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dissected genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds</td>
<td>Black</td>
</tr>
<tr>
<td>Flower</td>
<td>White</td>
</tr>
</tbody>
</table>

Plant morphology

Cytology: Chromosome morphology

Molecular markers (RAPD, SSR)

Isozymes

Glucosinolates
Monosomic Addition Line
AA + C4 Chromosome

Cheng et al. (1995)
Diakinesis: Chromatin condensation

Wuhan 31 March 2014
C6

Wuhan 31 March 2014
Meiotic chromosomes of addition line AA + chromosome C4
Meiotic chromosomes of addition line AA + chromosome C4
Diakinesis
Univalents, bivalents and multivalents

Chromosome homoeology

Wuhan 31 March 2014
Frequencies of uni-, bi-, tri- and pentavalents

<table>
<thead>
<tr>
<th>C</th>
<th>No.</th>
<th>I</th>
<th>II</th>
<th>III<sup>1</sup></th>
<th>III<sup>2</sup></th>
<th>III<sup>3</sup></th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>193</td>
<td>59</td>
<td>9</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td>441</td>
<td>90</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>573</td>
<td>51</td>
<td>1</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>537</td>
<td>39</td>
<td></td>
<td></td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>124</td>
<td>44</td>
<td>7</td>
<td>13</td>
<td>25</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>348</td>
<td>68</td>
<td>1</td>
<td>10</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>63</td>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>343</td>
<td>82</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>350</td>
<td>40</td>
<td>9</td>
<td>48</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wuhan 31 March 2014
Mitotic Chromosomes of Addition Line AA + Chromosome C₉

Fluorescence in situ hybridization 25S and 5S rDNA

Wuhan 31 March 2014
Multi-target FISH

Method described by Xiong and Pires (2011)

5S rDNA
25S rDNA
BAC KBrB072L17
BAC KBrH092N24

CentBr1
CentBr2
BAC BNIH 123L05

Wuhan 31 March 2014
Simple Sequence Repeats (SSRs)

- Defining SSR markers specific to the C-genome

- Defining markers specific to each of the C-chromosomes which was decisive for developing the MAALs

- Elucidating the correspondence between the cytological nomenclature and physical maps/linkage group designations
SSRs

185 tested

88 C-genome specific

64 C-chromosome specific

2-10 specific to individual chromosomes

17 specific to 2-5 chromosomes

Wuhan 31 March 2014
Availability of the MAALs

Seeds available from the gene bank NordGen
www.nordgen.org

C1, C2, C3d, C4, C4d, C5, C6, C7, C8 and C9

Parental species AA and CC

Resynthesized AACC
Prospects: MAALs

- Physical mapping and chromosome painting.
FISH: Use of BAC clones. Multicolour pachytene chromosome painting in Arabidopsis thaliana (Lysak and Lexer 2006)
Xiong et al. (2010) A7 B. napus

Wuhan 31 March 2014
Prospects: MAALs

- Physical mapping and chromosome painting.

- Painting of heterobivalents and multivalents, and defining homoeologous A and C chromosomes.

- Expanding the list of C-chromosome specific SSRs, and physical and genetic mapping of SSRs (Cuadrado and Jouve 2010).

- Detailed studies on introgression in AA progeny plants and in AA and C chromosomes of mono- and disomic addition lines.

- Further studies on the control of seed colour exerted by seven C chromosomes. Understanding how the deletion in C4 affects the expression of the seed colour gene on this chromosome.

- Contributing to marker-assisted breeding of desirable characters.

- Comparing with *B. oleracea* – *B. rapa* MAALs (Li *et al*. 2013).

Wuhan 31 March 2014
Summary and conclusions

- Karyotype, genetic linkage groups and physical mapping of *B. oleracea* highlighted, and correspondence between designations indicated.

- All nine possible *Brassica rapa* – *B. oleracea* MAALs are now available (NordGene Bank, Alnarp, Sweden).

- Number of cotyledons, flower colour, leaf appearance and seed colour are useful characters for differentiating C-chromosome carriers. Genes on seven C-chromosomes maternally or embryonically control seed colour in a major or minor way.

- Meiotic homoeological pairing between C- and A-chromosomes infers intergenomic gene transfer.

- GISH and FISH with rDNA, repetitive sequences and BAC probes are instrumental for differentiating the alien C-chromosomes.

- SSRs specific for, and shared by, alien chromosomes are defined.

- Need of further physical mapping and chromosome painting emphasized.

Wuhan 31 March 2014
Our sincere thanks to many colleagues

B.Y. Chen (Bayer CropScience, Saskatoon, Canada)
B. Cheng (Agr. Agri-Food Canada, Saskatoon, Canada)

R.B. Jørgensen (Risø DTU, Roskilde, Denmark)

R. Hasterok (Univ. Silesia, Katowice, Poland)

Z. Xiong and C. Pires (Univ. Missouri, Columbia, U.S.A.)

S. Kurup and A. Stoute (Rothamsted Res., Harpenden, U.K.)

G.J. King (Southern Cross Univ., Lismore, Australia)

Thanks very much!